Occupational Mobility: Theory and an Application to Italy

Irene Brunetti ¹ Davide Fiaschi²

¹INAPP - National Institution for Public Policy Analysis ²University of Pisa - Italy

Dipartimento di Economia e Management November 21, 2018

Literature on Social Mobility

- Occupation: Cobalti and Schizzerotto (1994); Checchi et al. (1999); Pisati (2000); Corak and Piraino (2011); Franzini et al. (2013), Long and Ferie (2013).
- **Income**: Solon (2002); Bjrklund and Jntti (2009); Black and Devereux (2011); Bjrklund et al. (2012); Corak (2013).
- **Social Class**: Erikson and Goldthorpe (1992); Breen and Jonsson (2005).
- Equality of opportunities versus equality of outcome: Ooghe, Shokkaert and Van De Gaer (2007); Lefranc, Pistolesi and Trannoy (2008).

- 4 同 6 4 日 6 4 日 6

Our theoretical framework of analysis

- Social mobility proxied by occupational mobility (from sociology)
- Occupational mobility = True occupational mobility (individual choices) + Occupational Shifts (production side) (Prais, 1955)
- True occupational mobility = Equality of opportunity Lack of income incentives (our novelty)

The road map of the presentation

- A (simple?) theoretical model on occupational mobility.
- An application to Italy.

A model of true occupational mobility

- Two classes of occupations (income and social status):
 - Working and Lower Middle (WLM) class;
 - Upper Middle and Capitalist (UMC) class.
- The life-time (indirect) utility of individual *i*, *U_i*, only depends on his/her occupation, i.e.:

 $U_i = \begin{cases} W_i & \text{if individual belongs to WLM class;} \\ \Pi_i & \text{if individual belongs to UMC class,} \end{cases}$

• Life-time utility has a stochastic component:

$$\log W_i \sim \mathcal{N}\left(\mu_{WLM}; \sigma_{WLM}^2\right);$$

$$\log \Pi_i \sim \mathcal{N} \left(2\theta_i \mu_{UMC}; \sigma_{UMC}^2 \right)$$

with $0 \le \mu_{WLM} \le \mu_{UMC}$ and $\sigma^2_{WLM} \le \sigma^2_{UMC}$.

The incentives

• The individual decides to belong to UMC class if and only if:

$$\mathsf{UMCc} \succeq \mathsf{WLMc} \Longleftrightarrow \mathbf{E}[\Pi_i] - c_e \ge \mathbf{E}[W_i] + \sigma^{RP},$$

where σ^{RP} is the risk premium depending on the attitude towards risk of individual *i* (assumed to be equal across individuals).

• A risk-adverse (or risk-neutral) individual decides to belong to UMC class *if and only if*:

$$\mathcal{JMCc} \succeq \mathsf{WLMc} \iff \theta_{i} \geq \lambda \equiv \underbrace{\frac{\mu_{WLM}}{2\mu_{UMC}}}_{\mathsf{Component II}} + \underbrace{\frac{\sigma^{RP}\left(\frac{\sigma^{2}_{UMC}}{\sigma^{2}_{WLM}}\right)}_{\mathsf{Component III}} + \underbrace{\frac{c_{e}}{2\mu_{UMC}}}_{\mathsf{Component III}} \geq 1/2.$$
(1)

 Given θ_i, λ is the threshold, which determines the incentives for individual i to move to class UMC.

Brunetti and Fiaschi (2018)

The opportunities

- θ_i is an idiosyncratic factor that measures the **opportunities** of the individual i, and it is assumed to be known by the individual.
- If parents belong to WLM class, the probability distribution of θ_i is given by:

 $f(\theta_i | WLM) \sim \mathcal{U}(0, \theta^{\max}),$

with $\theta^{\max} \leq 1$.

• If parents belong to UMC class, the probability distribution of θ_i is given by:

$$f(\theta_i | UMC) \sim \mathcal{U}(\theta^{\min}, 1),$$

with $\theta^{\min} \ge 0$.

A B A A B A

A comparison between opportunities of individuals whose parents belong to different occupational classes.

- A higher θ^{max} favours a change in occupational class for individuals whose parents are in WLM class.
- A lower θ^{\min} favours a change in occupational class for individuals whose parents are in UMC class.

< 3 > < 3 >

The opportunities

Markov matrix for occupational mobility

Under assumption:

 $\theta^{\max} > \lambda$ and $\theta^{\min} < \lambda$

 \Rightarrow occupational mobility is described by *Markov matrix* **Q**:

Fathers\Children	WLM	UMC
WLM	$rac{\lambda}{ heta$ max	$\frac{\theta^{\max} - \lambda}{\theta^{\max}}$
UMC	$\frac{\lambda - \theta^{\min}}{1 - \theta^{\min}}$	$\frac{1-\lambda}{1-\theta^{min}}$

Ergodic Distribution:

$$\pi_{\mathbf{Q}} = \left[\begin{array}{c} \frac{1}{1 + \gamma(\theta^{\min}, \theta^{\max}, \lambda)}, \frac{\gamma(\theta^{\min}, \theta^{\max}, \lambda)}{1 + \gamma(\theta^{\min}, \theta^{\max}, \lambda)} \end{array} \right],$$

where

$$\gamma = rac{(heta^{\mathsf{max}}-\lambda)(1- heta^{\mathsf{min}})}{ heta^{\mathsf{max}}(\lambda- heta^{\mathsf{min}})}.$$

通 ト イヨ ト イヨト

Measures of occupational mobility

From **Q** we have a measure of occupational mobility (Shorrocks 1978):

$$I_{S} = 2 - \operatorname{tr}(\mathbf{Q}) = 2 - \frac{\lambda(1 - \theta^{\min} - \theta^{\max}) + \theta^{\max}}{\theta^{\max}(1 - \theta^{\min})};$$

- \Rightarrow occupational mobility:
 - increases with θ^{\max} ;
 - decreases with θ^{\min} .

The relationship with λ is ambiguous:

 higher λ means less (upward) mobility for WLM children and higher (downward) mobility for UMC children.

BUT

• If $\theta^{\min} + \theta^{\max} < 1 \Rightarrow$ the first effect prevails on the second and I_S decreases with λ .

A B < A B </p>

Disentangle the occupational mobility due to incentives and opportunities.

• A measure of socio-economic opportunities in the range [0-2]: B+C+D+E

$$I_{OPP} = 2 - \frac{\theta^{\min}(1 - \theta^{\min}) + \theta^{\max}(1 - \theta^{\max})}{\theta^{\max}(1 - \theta^{\min})}$$

• A measure of the incentives for children to **not** change their occupational class in the range [0-2], an index of lack of (income) incentives: B+E

$$I_{LOI} = \frac{\lambda - \theta^{\min}}{\theta^{\max}} + \frac{\theta^{\max} - \lambda}{1 - \theta^{\min}}.$$

Three types of societies

• Perfect Mobile Society The probability of entering a particular class is independent of the class of one's parents: $\theta^{\min} = 0$ and $\theta^{\max} = 1$

$$\mathbf{Q}_{\mathsf{PMS}} = egin{bmatrix} \lambda & 1-\lambda \ \lambda & 1-\lambda \end{bmatrix}$$

 $\textbf{@ Perfect Immobile Society No movements between classes take place: } \\ \theta^{\min} > \lambda \text{ and } \theta^{\max} < \lambda$

$$\mathbf{Q}_{\mathbf{PIS}} = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$$

③ *Ex-Post-Minimum Inequality Society* Class *WLM* is the absorbing class in the equilibrium distribution: $\theta^{\min} < \lambda$ and $\theta^{\max} < \lambda$

$$\mathbf{Q}_{\mathbf{EPMIS}} = egin{bmatrix} 1 & 0 \ rac{\lambda - heta^{\min}}{1 - heta^{\min}} & rac{1 - \lambda}{1 - heta^{\min}} \end{bmatrix}$$

The occupational structure (Prais, 1955)

• Prais (1955) suggests to consider the **observed** transition matrix **P** is the result of the *product* of two Markov transition matrices corresponding to two forces:

$$\mathbf{P}^{\top} = \mathbf{R}^{\top} \mathbf{Q}^{\top} \Rightarrow \mathbf{Q}^{\top} = (\mathbf{R}^{\top})^{-1} \mathbf{P}^{\top},$$

where ${\bf Q}$ is the matrix of true occupational mobility, and ${\bf R}$ is the matrix of occupational shifts.

• Given the individual choices and the shares of observations at period t, $s_{t+1}^{UN} = \mathbf{Q}^\top s_t,$

is the vectors of allocations of individuals in each occupational class at period t + 1 when there are no constraints from the demand side.

• The observed vector at period t + 1 is given by:

$$s_{t+1} = \mathbf{R}^{ op} s_{t+1}^{UN} = \mathbf{R}^{ op} \mathbf{Q}^{ op} s_t = \mathbf{P}^{ op} s_t,$$

where R reflects these possible differences due to occupational shifts, $\ensuremath{\mathsf{a}_{\circ}}\ensuremath{\mathsf{o}}$

Three possible matrices of occupational shifts

• No occupational shifts happened, i.e. $s_{t+1,WLM} = s_{t,WLM}$ and $s_{t+1,UMC} = s_{t,UMC}$; then:

$$\mathbf{R}^*_{\mathbf{NOS}} = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$$

• Occupational shifts happened in favour of WLM class, i.e. $s_{t+1,WLM} > s_{t,WLM}$ and $s_{t+1,UMC} < s_{t,UMC}$; then:

$$\mathbf{R}^*_{\mathbf{WLM}} = \begin{bmatrix} 1 & 0\\ \frac{s_{t,UMC} - s_{t+1,UMC}}{s_{t,UMC}} & \frac{s_{t+1,UMC}}{s_{t,UMC}} \end{bmatrix}.$$

• Occupational shifts happened in favour of UMC class, i.e. $s_{t+1,WLM} < s_{t,WLM}$ and $s_{t+1,UMC} > s_{t,UMC}$; then:

$$\mathbf{R}^*_{\mathbf{UMC}} = \begin{bmatrix} \frac{s_{t+1,WLM}}{s_{t,WLM}} & \frac{s_{t,WLM} - s_{t+1,WLM}}{s_{t,WLM}} \\ 0 & \frac{1}{s_{t,WLM}} \end{bmatrix}.$$

The estimation of the matrix of occupational shifts

• We depart from Prais (1955) estimating **R** under the criterion of the *jointly minimum* occupational mobility (measured by the opposite of trace of **R** subject to the observed occupational shifts):

$$\max_{\mathbf{R}} \operatorname{tr}(\mathbf{R}) \qquad \text{subject to} \begin{cases} s_{t+1} = \mathbf{R}^{\top} s_t, \\ \sum_{j=1}^k r_{ij} = 1 \quad \forall i = 1...k; \\ r_{ij} \ge 0 \qquad \forall ij. \end{cases}$$

The sample

- Source: "Survey on Household Income and Wealth", Bank of Italy.
- **Period**: 1998-2012; eight waves: 1998, 2000, 2002, 2004, 2006, 2008, 2010 and 2012.
- **Sample size**: 11807 observations (all **heads of household** aged from 22 up to 65).
- Variable: Occupational status of children and their fathers.

Occupational mobility

Three Cohorts:

- 4015 obs in **Cohort I:** 1947 1956,
- 4848 obs in Cohort II: 1957 1966,
- 2944 obs in **Cohort III:** 1967 1976.

Two occupational classes:

- Working and Lower Middle (WLM) class,
- Upper Middle and Capitalist (UMC) class.

Occupations are ranked according to their social prestige: WLM class: unemployed, blue collar, clericals and teacher; UMC class: managers, member of professions and self-employed workers.

()

Markov matrices of socio-economic mobility

	Р				к				Q		
Cohort I	WLM	UMC	N.Obs	Cohort I	WLM	UMC	N.Obs	Cohort I	WLM	UMC	N.Obs
WLM	0.74	0.26	2742	WLM	0.98	0.02	2742	WLM	0.74	0.26	2742
UMC	0.52	0.48	1273	UMC	0	1	1273	UMC	0.52	0.48	1273
N.Obs	2713	1302	4015	N.Obs	2713	1302	4015	N.Obs	2713	1302	4015
Cohort II	WLM	UMC	N.Obs	Cohort II	WLM	UMC	N.Obs	Cohort II	WLM	UMC	N.Obs
WIM	0.77	0.23	3406	WIM	1	0	3406	WIM	0.77	0.23	3406
	0.11	0.20	5400				5400		0.11	0.25	5400
UMC	0.55	0.45	1442	UMC	0.02	0.98	1442	UMC	0.55	0.45	1442
N.Obs	3435	1413	4848	N.Obs	3435	1413	4848	N.Obs	3435	1413	4848
Cohort III	WLM	UMC	N.Obs	Cohort III	WLM	UMC	N.Obs	Cohort III	WLM	UMC	N.Obs
WIM	0.86	0.14	2112	WI M	1	0	2112	WIM	0.85	0.15	2112
	0.00	0.14	2112		-		2112	WEIN .	0.00	0.15	2112
UMC	0.63	0.37	832	UMC	0.24	0.76	832	UMC	0.55	0.45	832
N.Obs	2308	636	2944	N.Obs	2308	636	2944	N.Obs	2308	636	2944

Looking at **P**:

• Cohort I and II are similar.

• Cohort II and III are different: p_{11} increases, p_{22} decreases and p_{21} increases.

Looking at **Q**:

- Cohort I and II are similar.
- Cohort II and III are different: q_{11} increases.

 $\Rightarrow p_{22} \neq q_{22}$ since $r_{22} << 1$

3 > < 3 >

Table: Estimate of I^P (observed occupational mobility), I^Q (true social mobility) and I^R (structural mobility). *Notes:* standard errors computed via 1000 bootstraps are reported in parenthesis.

Cohort	I^P	I ^Q	I ^R
<i>I</i> (1947 - 56)	0.78 (0.016)	0.776 (0.017)	0.004
II(1957 — 66)	0.783 (0.014)	0.779 (0.015)	0.004
<i>III</i> (1967 – 76)	0.782 (0.048)	0.701 (0.059)	0.081

4 2 5 4 2 5

Estimate of the Parameters of the Model

Table: Estimate of λ , θ^{\min} , θ^{\max} , I_S^Q , I_{OPP} and I_{LOI} . Notes: standard errors computed via 1000 bootstraps are reported in parenthesis.

Cohort	$\hat{\lambda}$	$\hat{ heta}^{min}$	$\hat{ heta}^{max}$	\hat{I}_{S}^{Q}	Î _{OPP}	Î _{LOI}
<i>I</i> (1947 – 56)	0.52 (0.013)	0.010 (0.0008)	0.70 (0.020)	0.77 (0.017)	1.68 (0.020)	0.91 (0.040)
II(1957-66)	0.54 (0.013)	0.008 (0.0002)	0.713 (0.019)	0.779 (0.015)	1.70 (0.005)	0.92 (0.002)
<i>III</i> (1967 – 76)	0.51 (0.06)	0.001 (0.01)	0.639 (0.08)	0.701 (0.059)	1.64 (0.06)	0.93 (0.04)

- The incentives (λ) increases, the opportunities for WLM to move upward (θ^{max}) decreases, and increases the opportunities for UMC to move downward (θ^{min}).
- From Cohort I to II I_S doe not change, but from Cohort II to Cohort III decreases.
- From Cohort I to II *I*_{OPP} increases, but from Cohort II to Cohort III decreases.

Brunetti and Fiaschi (2018)

The Determinant of Income Incentives

A risk-adverse (or risk-neutral) individual decides to belong to UMC class *if and only if:*

Table: The decomposition of income incentives for the three cohorts.

Cohort	$\hat{\lambda}$	μ_{WLM}	μυмс	σ^2_{WLM}	σ^2_{UMC}	$rac{\mu_{WLM}}{2\mu_{UMC}}$	$rac{\sigma_{UMC}^2}{\sigma_{WLM}^2}$
Ι	0.52	10.11	10.50	0.20	0.46	0.481	2.28
11	0.55	10.01	10.37	0.21	0.51	0.483	2.44
<i>III</i>	0.56	9.89	10.21	0.24	0.44	0.486	1.85

Brunetti and Fiaschi (2018)

THANKS FOR YOUR ATTENTION!

<ロ> (日) (日) (日) (日) (日)